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Abstract
We have derived long series expansions for the perimeter generating functions
of the radius of gyration of various polygons with a convexity constraint.
Using the series we numerically find simple (algebraic) exact solutions for the
generating functions. In all cases the size exponent ν = 1.

PACS numbers: 05.50.+q, 05.70.Jk, 02.10.Ox

1. Introduction

A well-known long standing problem in combinatorics and statistical mechanics is to find the
generating function for self-avoiding polygons (or walks) on a two-dimensional lattice. The
models are of tremendous inherent interest as well as serving as simple models of polymers and
vesicles [1–3]. Despite strenuous effort over the past 50 years or so, this problem has not been
solved on any regular two-dimensional lattice. However, there are many simplifications of
this problem that are solvable [4], but all the simpler models impose an effective directedness
or other constraint that reduces the problem, in essence, to a one-dimensional problem.

One particular class of exactly solved polygon models are those with a convexity constraint
(see figure 1). On the square lattice a polygon is said to be convex if it is convex with respect
to both vertical and horizontal lines, i.e., any vertical line will intersect the polygon at zero or
two horizontal edges while similarly any horizontal line will intersect the polygon at zero or
two vertical edges. Alternatively, a convex polygon is a SAP of a length equal to the perimeter
of its minimal bounding rectangle. If we further demand that the polygon must include the
vertices in some of the corners of the minimal bounding rectangle, we can define a further five
polygon models as illustrated in figure 1. The full perimeter and area generating functions are
known for all these models [4]. Also of great interest is the mean-square radius of gyration,
〈R2〉n, which measures the typical size of a polygon with perimeter n. In this letter, we report
on work leading to conjectured exact solutions for the generating functions associated with
the mean-square radius of gyration for the class of convex polygons.
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An n-step self-avoiding walk ω is a sequence of distinct vertices ω0, ω1, . . . , ωn such
that each vertex is a nearest neighbour of it predecessor. SAWs are considered distinct up to
translations of the starting point ω0. A self-avoiding polygon of length n is an n−1-step SAW
such that ω0 and ωn−1 are nearest neighbours and a closed loop can be formed by inserting a
single additional step joining the two end points. We shall use the symbol Ωn to mean the set
of all SAPs of perimeter length n. Generally SAPs are considered distinct up to a translation,
so if there are pn SAPs of length n there are 2npn walks (the factor of 2 arising since the
walk can go in two directions). One expects in general that pn ∼ Aµnnα−3, where µ is the
so-called connective constant while α is a critical exponent. In our cases µ and α are known
from the exact solutions for the perimeter generating functions

P(x) =
∑

n

p2nx
n ∼ A(x)(1 − µ2x)2−α, (1)

where we took into account that polygons on the square lattice have even length. The generating
functions thus have a singularity at the critical point xc = 1/µ2 with critical exponent 2 − α.
The function A(x) is analytic at x = xc. Note that both µ and α are model dependent.

The mean-square radius of gyration of n-step polygons is defined by

〈R2〉n = 1

2n2pn

∑

Ωn

n−1∑

i,j=0

(ωi − ωj)
2, (2)

where we expect that 〈R2〉n ∼ Bn2ν . It is advantageous to look at the quantity rn = n2pn〈R2〉n,
which is an integer, and in particular we shall study the associated generating function

R(x) =
∑

n

r2nx
n ∼ B(x)(1 − µ2x)−(α+2ν), (3)

where we again used that rn is non-zero only when n is even.
The values for the critical exponents are known exactly, though non-rigorously, for self-

avoiding polygons due to the work by Nienhuis [5], α = 1/2 and ν = 3/4. As we shall
demonstrate later, the exponent α takes on several different values for the convex polygons
studied in this letter, but the exponent ν = 1 in all cases.

In the next section, we briefly describe the algorithm used to calculate rn and in the
following section we list the various perimeter generating functions.

2. Computer enumeration

The first terms in the series for the polygon generating function are calculated using transfer
matrix techniques to count the number of polygons spanning rectangles W + 1 edges wide
and L + 1 edges long. The transfer matrix technique involves drawing a line through the
rectangle intersecting a set of edges. For each configuration of occupied or empty edges along
the intersection, we maintain a (perimeter) generating function for partial polygons cutting
the intersection in that particular pattern. Due to the convexity constraint a vertical line will
intersect the polygon exactly twice. The upper edge of the convex polygon performs a directed
walk taking steps to the right and up until it reaches the top of the rectangle where it turns
and then performs a directed walk with steps to the right and down. Likewise the lower edge
performs a directed walk with right and down steps until it hits the bottom of the rectangle
where it turns and takes only right and up steps. A convex polygon is formed once the two
walks meet. In order to specify a configuration we just need to know the positions of the edges
and whether or not the top and bottom of the rectangle have been touched. All the possible
configurations can then be encoded by four (W + 1) × (W + 1)-matrices, one matrix for each
possibility of touched borders. As the vertical boundary line is moved one step forward, the



Letter to the Editor L771

Convex polygon Directed and convex polygon Staircase polygon

Stack polygon Ferrers diagram Rectangular polygon

Figure 1. Examples of the types of convex polygons we consider in this letter.

matrices are updated to allow for all the legal moves of the edge-walks (the walks must be
directed as described above and never cross). The updating involves simple double sums
over the indices. This approach was used by Guttmann and Enting [6] and is very efficient.
However, in one iteration many steps can be inserted and this makes the calculation of the
contributions to the radius of gyration somewhat cumbersome. We find it more convenient
to use an algorithm in which the convex polygons in a given rectangle are enumerated by
moving the intersection so as to add one vertex at a time. The method we used to enumerate
convex polygons on the square lattice is a specialization of the method originally devised by
Enting [7] for the enumeration of self-avoiding polygons. As noted earlier, convex polygons
can be viewed as SAPs with a number of steps equal to the perimeter of the minimal bounding
rectangle. So we could simply take our previous algorithm [8, 9], which we generalized in
order to calculate the radius of gyration, and only extract the terms counting convex polygons.
Due to the convexity constraint we were able to simplify the algorithm somewhat and make it
more efficient. However, the algorithm is still quite similar to the SAP enumeration algorithm
so we would not describe it further. Suffice to say that the method for calculating the radius
of gyration coefficients rn has been described in [9].

Using this algorithm we quickly (a few hours of CPU time) calculated the radius of
gyration of the polygon models of figure 1 to length n = 110, giving us 56 terms in the
half-perimeter series. The first few terms pn and rn are listed in table 1. The full series for the
generating functions studied in this letter can be obtained by sending a request to the author
or via the web at http://www.ms.unimelb.edu.au/˜iwan/.

3. The exact generating functions

In this section we use the series for rn to find (numerically) the exact perimeter generating
functions for the radius of gyration of convex polygons.

The perimeter generating function for convex polygons was first obtained by Delest and
Viennot [10] using the method of algebraic languages and later by several other authors using
different methods [6, 11, 12]:

PConvex(x) = x2 − 6x3 + 11x4 − 4x5

(1 − 4x)2
− 4x4

(1 − 4x)3/2
. (4)
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Table 1. The number of polygons pn and their mean-squared radius of gyration rn = n2pn〈R2〉n.

Convex polygons Directed and convex polygons Staircase polygons

n pn rn pn rn pn rn

4 1 8 1 8 1 8
6 2 66 2 66 2 66
8 7 600 6 522 5 444

10 28 5 164 20 3 772 14 2 710
12 120 41 768 70 25 138 42 15 512
14 528 317 584 252 157 212 132 84 756
16 2 344 2 280 792 924 935 140 429 446 952
18 10 416 15 573 120 3 432 5 343 160 1 430 2 291 718
20 46 160 101 743 312 12 870 29 541 450 4 862 11 485 760
22 203 680 639 664 960 48 620 158 920 172 16 796 56 486 716
24 894 312 3 889 101 336 184 756 835 390 460 58 786 273 405 288
26 3 907 056 22 961 959 168 705 432 4 305 416 136 208 012 1 305 401 916
28 16 986 352 132 118 984 560 2 704 156 21 812 985 652 742 900 6 159 651 344
30 73 512 288 743 046 249 664 10 400 600 108 875 244 952 2 674 440 28 766 573 800
32 316 786 960 4 095 077 270 128 40 116 600 536 326 527 048 9 694 845 133 128 274 320
34 1 359 763 168 22 163 717 040 384 155 117 520 2 611 304 032 624 35 357 670 611 143 639 110
36 5 815 457 184 118 021 533 366 432 601 080 390 12 582 098 181 466 129 644 790 2 785 335 811 920
38 24 788 842 304 619 313 064 407 680 2 333 606 220 60 058 408 242 252 477 638 700 12 612 104 460 780
40 105 340 982 248 3 206 924 122 635 928 9 075 135 300 284 257 070 075 212 1 767 263 190 56 773 091 159 400

Stack polygons Ferrers diagrams Rectangular polygons

4 1 8 1 8 1 8
6 2 66 2 66 2 66
8 5 444 4 366 3 288

10 13 2 541 8 1 640 4 900
12 34 12 840 16 6 404 5 2 280
14 89 59 113 32 22 696 6 4 998
16 233 253 600 64 74 832 7 9 856
18 610 1 029 802 128 233 312 8 17 928
20 1 597 4 002 112 256 695 680 9 30 600
22 4 181 15 005 189 512 2 000 128 10 49 610
24 10 946 54 603 436 1 024 5 578 752 11 77 088
26 28 657 193 743 969 2 048 15 166 464 12 115 596
28 75 025 672 725 072 4 096 40 336 384 13 168 168
30 196 418 2 292 470 170 8 192 105 256 960 14 238 350
32 514 229 7 685 026 612 16 384 270 135 296 15 330 240
34 1 346 269 25 392 243 845 32 768 683 188 224 16 448 528
36 3 524 578 82 826 447 752 65 536 1 705 443 328 17 598 536
38 9 227 465 267 077 278 409 131 072 4 207 935 488 18 786 258
40 24 157 817 852 322 922 488 262 144 10 274 078 720 19 1 018 400

From this we see that the critical point xc = 1/4 (and thus µ = 2) while the critical exponent
2 − α = −2 (and thus α = 4), corresponding to the dominant double pole at x = xc. In
addition there is a sub-dominant square root correction. Informed by this result it is natural to
assume that the generation function for the mean-squared radius of gyration has a similar form.
That is we assume that R(x) = [A(x) + B(x)

√
1 − 4x]/(1 − 4x)γ , where A(x) and B(x) are

polynomials. Using the method of differential approximants [13] we easily established that
γ = 6. Next we wrote a simple Maple routine to find such a solution, that is we solve for



Letter to the Editor L773

the unknown coefficients ai and bi of A(x) and B(x). We simply form the series expansion
for [A(x) + B(x)

√
1 − 4x], match the series coefficients to those of R(x)(1 − 4x)6 and solve

the resulting set of linear equations in the coefficients ai and bi . In this fashion we found
a solution with polynomials of degree 10 requiring not more than 22 unknown coefficients.
Since we have more than 50 known terms r2n there are at least 30 unused series coefficients
which serve as strong checks on the correctness of our solution. The generating function for
the mean-squared radius of gyration of convex polygons is

RConvex(x)= 2x2(1 − 2x)(4 − 55x + 388x2 − 1058x3 + 956x4 + 2064x5 − 6592x6 + 6400x7)

(1 − 4x)6

− 4x4(15 + 22x − 408x2 + 1664x3 − 3720x4 + 3456x5)

(1 − 4x)11/2
. (5)

From this we see that the critical exponent α + 2ν = 6 and thus ν = 1. This should be
compared to the result for self-avoiding polygons ν = 3/4 [5]. Physically, there is a simple
argument for ν = 1. Convex polygons are relevant to the description of vesicles in the inflated
regime, where they are space filling, and since the radius of gyration measures a typical size
of a polygon 〈R2〉n is proportional to a typical area and hence ν = 1 for convex polygons.
The value ν = 3/4 means that SAPs are much more ramified.

Directed and convex polygons were considered by Lin and Chang [11]. They calculated
the full anisotropic generating function for directed and convex polygons. In the isotropic
case which we consider here their result reduces to the very simple form

PDirConv(x) = x2

(1 − 4x)1/2
, (6)

so we have xc = 1/4 while 2 − α = −1/2 and thus α = 5/2. As for the convex case we start
by looking for a solution to R(x) of the same form, that is R(x) = A(x)/(1 − 4x)γ , with
γ = 9/2 determined from differential approximants. However we were not successful at first,
so next we tried a solution of the same form as for convex polygons and found that

RDirConv(x) = −x2 + 20x3 − 48x4 + 24x5 − 168x6 + 384x7

(1 − 4x)9/2
+

9x2 − 44x3 + 72x4 − 32x5

(1 − 4x)3
.

(7)

So in this case we find the critical exponent α + 2ν = 9/2 and thus as before ν = 1.
The model of staircase polygons is very well known and much studied, dating back at

least to the work by Pólya [14] who showed that p2n = 1
4n−2

(2n

n

)
for n � 2. This result was

obtained by Delest and Viennot [10] in the more elegant form p2n+2 = Cn = 1
n+1

(2n

n

)
, where

Cn are the famous and ubiquitous Catalan numbers. Consequently the generating function is

PStair(x) = (1 − 2x − √
1 − 4x)/2, (8)

and xc = 1/4, while 2 − α = 1/2 and thus α = 3/2. As per the previous cases we quite
readily find the radius of gyration generation function

RStair(x) = x(1 − 6x + 24x2 − 60x3 + 64x4)

(1 − 4x)7/2
− x, (9)

and we see that α + 2ν = 7/2 and once again ν = 1.
Stack polygons were also considered by Lin and Chang [11] and their result for the

generating function is

PStack(x) = x2(1 − x)

(1 − 3x + x2)
. (10)
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The critical point is now given by the zero of 1 − 3x + x2 namely xc = 0.381 966 011 . . . and
the critical exponent is 2 − α = −1 or α = 3. In this case the radius of gyration generation
function is of the same form and again we have ν = 1. Explicitly we find that

RStack(x)= 8x2 − 54x3 + 214x4 − 489x5 + 605x6 − 386x7 + 177x8 − 120x9 + 19x10 − x11

(1 − 3x + x2)5
.

(11)

The generating function for Ferrers diagrams is trivial in that these polygons are simply
formed from a directed walk with n − 2 right or up steps, extended at the starting point with
a horizontal step and at the end point with a vertical step, and then closed by straight lines to
form a polygon with 2n steps. It immediately follows that the generating function is

PFerrers(x) = x2

(1 − 2x)
, (12)

and we have xc = 2 and α = 3. The radius of gyration generation function is of the same
form and with ν = 1,

RFerrers(x) = 2x2(4 − 7x + 13x2 − 10x3 + 2x4)

(1 − 2x)5
. (13)

Rectangular polygons are obviously the simplest case and the generating function is
simply

PRect(x) = x2

(1 − x)2
, (14)

so that xc = 1 and α = 4. The radius of gyration generating function is found to be

RRect(x) = 2x2(1 + x)2(4 + x)

(1 − x)6
, (15)

and again we have ν = 1.
Now that these results for the radius of gyration of convex polygons are known from the

numerical work presented here it should be easier to prove them rigorously.
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